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Slab Percolation and Phase Transitions
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We prove, using the random-cluster model, a strict inequality between site percolation
and magnetization in the region of phase transition for the d-dimensional Ising model,
thus improving a result of [5]. We extend this result also at the case of two plane lattices
Z

2 (slabs) and give a characterization of phase transition in this case. The general case
of N slabs, with N an arbitrary positive integer, is partially solved and it is used to
show that this characterization holds in the case of three slabs with periodic boundary
conditions.
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1. INTRODUCTION

At the end of the 70’s the seminal paper [5] showed the connection between
phase transition for the ferromagnetic Ising model and site percolation. This point
of view has given a geometrical interpretation of phase transition, initiating a
new line of research. Following this approach Higuchi developed techniques to
study percolation for the two dimensional Ising model, with non zero external
field [18, 19, 20, 21]. For example, he showed that for every β < βc there exists
a positive critical point hc(β) such that an infinite cluster of (+)-sites does not
exist for all h < hc. In [2] the authors study percolation on Z

d ; they show that for
h > hc(0) + 2dβ, or for h ≥ 0 when β > βc there is percolation.

There are substantial differences between dimensions two and three for per-
colation in the Ising model; in fact in [7] it is showed that in three dimensions
there is coexistence of infinite plus and minus clusters (at least for small values of
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the parameter β), while in two dimensions it is proved that the infinite clusters of
opposite sign can not coexist [5, 14].

In our paper there are two main results. The first is a strict inequality between
percolation probability and magnetization, and the second one is an extension of
[5].

The results have a common spirit, in fact, using also [2], we can show that
for dimensions large enough there is percolation for each value of the tempera-
ture parameter. In contrast we show that, for some slab lattices, there is column
percolation only in the region of transition phase.

To explain the physical meaning of the strict inequality let ρ+
∞, ρ+

f and ρ−

denote respectively the percentage of sites belonging to the positive infinite cluster,
the percentage of sites belonging to positive finite clusters and the percentage
of negative sites. These quantities, by spatial ergodicity, are well defined and
ρ+

∞ + ρ+
f + ρ− = 1. Then our inequality can be rewritten as ρ− > ρ+

f when the
Ising model is in the transition phase region with positive boundary conditions.

In the second part we deal with Ising model on slab graphs. The experimental
and theoretical study of materials in thin-film form is an important subject in
condensed matter field. Our paper could be a first step towards the study of thin
crystals from a mathematical point of view. We characterize, using percolation,
the transition phase of the Ising model on some slab lattices (thin crystal).

Now we show two examples in which the change of lattice from Z
2 to

Z
2 × {0, 1, . . . , N } has a different behavior.

The symmetric neighbor random walk on Z
2 × {0, 1, . . . , N } is recurrent for

each value of N so it will have a different behavior with respect to the symmetric
neighbor random walk on Z

3. Vice versa the non coesistence result, under the
general hypotheses in [14], of minus and plus infinite clusters on Z

2 is lost on the
slab lattices Z

2 × {0, 1, . . . , N }.
From the fact that in physics there are few really 2-dimensional crystal

(lattice) we are interested to study properties that are stable in slab lattices (at
least for small N ) and in our paper we see that for small value of N percolation
characterize the phase transition also in these interesting lattices.

In the last twenty years the physicists have done, studing thin matter, a large
number of observations. We believe that an effort should be done to understand
some new phenomena also connect with Statistical Mechanics. For example an
interesting question, in part related with our result, could be the study of the
Dobrushin b.c. on slabs lattices or on lattices where the thermodynamic limit is
taken with a different speed on the axes x̂ , ŷ, and ẑ. In the next years an effort should
be done to study, from a mathematical point of view, the physics of thin-crystal.

The paper is organized as follows: in Section 2 we set the notation and
introduce some basic tools. In Section 3 we use the random cluster model to give,
below the critical temperature, a strict inequality between magnetization and site
percolation probability in the d-dimensional cubic lattice, in this way we improve
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a result of [5] (similar argument are used in [12]). Then, in Section 4 we partially
generalize the result to some slab graphs. Such graphs, also called bunkbed graphs,
have attracted the attention of other researches (see [3, 16]) in the study of random
walks, random-cluster model and some correlation inequalities for the Ising model.
In Section 5, for N = 2, we prove a characterization of phase transitions similar
to that for the Z

2 lattice, thereby obtaining an inequality between magnetization
and percolation probability of columns formed only of +1 spins. For N = 3 and
periodic boundary conditions, we are able to characterize the phase transition
through percolation of columns with majority of plus spins. However we cannot
obtain any meaningful inequality in this case.

2. BASIC DEFINITIONS AND NOTATION

In this section we set our notation for percolation, ferromagnetic Ising model,
and random-cluster model.

Let d ≥ 2 and let Z
d be the set of all points x = (x1, x2, . . . , xd ) with integral

coordinates. The distance ||x − y|| between x and y is defined by ||x − y|| =∑d
i=1 |xi − yi |. If ||x − y|| = 1 we say that x and y are adjacent. We turn Z

d into a
graph, called the d-dimensional cubic lattice, by adding edges e = 〈x, y〉 between
all pairs x, y of adjacent points of Z

d ; we denote this lattice by L
d = (Zd , E

d ),
where E

d is the edge set. The edge e = 〈x, y〉 is said to be incident to the vertices
x and y in this case we also say that x and y are endvertices of the edge e ∈ E

d .
Let � be a box of Z

d , i.e. � = ∏d
i=1[xi , yi ] for some x, y ∈ Z

d , where [xi , yi ]
is the set {xi , xi + 1, xi + 2, . . . , yi }; we write E� for the set of edges e = 〈x, y〉
in E

d such that x, y ∈ �.
A path of L

d is an alternating sequence (x0, e0, . . . , en−1, xn) of distinct
vertices and edges with ei = 〈xi , xi+1〉 for all i = 0, . . . , n − 1; such a path has
length n and is said to connect x0 to xn . A subset Y ⊂ Z

d is connected if for all
pairs x, y of vertices in Y , there exists a path connecting the vertices x, y having
all its vertices belonging to Y . The boundary of Y ⊂ Z

d is the set ∂Y of all vertices
in Z

d \ Y that are adjacent to at least one vertex in Y .
The edge space is � = {0, 1}E

d
, elements of which are ω = (ω(e) : e ∈ E

d ).
We say that the edge e is open if ω(e) = 1, and closed if ω(e) = 0. An open cluster
of ω is a maximal connected component of ω−1(1). We write {x ↔ ∞} for the set
of configurations ω ∈ � such that x belongs to an infinite open cluster of ω.

Let � = {−1,+1}Z
d

be the spin space, elements of which are σ = (σx : x ∈
Z

d ); σx is the spin on x . For σ ∈ � a (+)-cluster of σ is a maximal connected
component of σ−1(1). A (−)-cluster is defined in a similar way. We use the notation
(∞,±)-cluster to indicate an infinite (±)-cluster.

For 0 ≤ p ≤ 1, let φ1
p be the random-cluster measure on � with wired bound-

ary conditions (see [15]), and let µ±,β,J (or simply µ±) be the Ising measure on �

with (±)-boundary conditions, zero external field (h = 0) and interactions {Je}e∈E
d
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(see [22]). In this paper we agree that on each edge e of the graph under considera-
tion there is a constant interaction Je ≡ J = 1 (ferromagnetic Ising model). In the
paper we will write Ising model in place of ferromagnetic Ising model with zero
external field. In some cases one could take different values of the interactions on
different edges; this will be partially discussed in the last section.

For p = 1 − exp{−2β} let us denote with ν±,β (or simply ν±) the coupling
between Ising and random-cluster measures on � × � with plus boundary con-
ditions as defined in [23] (see also [8]).

For details in the construction and relations between the three measures ν+,
µ+ and φ1

p see [23]. Newman also deal with a more general setting of boundary
conditions and no-ferromagnetic interactions.

We give some other definitions. We put C±
∞ = {σ ∈ � : 0 ∈

(∞,±)-cluster of σ }, where 0 denotes the origin of Z
d . The percolation

probability is denoted by R(±; µ±) = µ±(C±
∞), and the magnetization in the

origin is

M(µ±) = Eµ±(σ0) = µ±(σ0 = +1) − µ±(σ0 = −1). (1)

It is known that

M(µ+) = φ1
p(0 ↔ ∞), (2)

(see [15, 23]).

3. Z
d PERCOLATION AND MAGNETIZATION

In this section we prove that if the temperature is lower than the critical
temperature, or equivalently if the magnetization is positive, then the percola-
tion probability is strictly greater than the magnetization and we give an explicit
estimate.

Theorem 3.1. For the Ising model, the following relation holds:

R(±; µ±) ≥ |M(µ±)| + 1

2
|M(µ±)|

(
p

2 − p

)2d(3d−1)

(1 − p)2d , (3)

where p = 1 − exp{−2β}.

Proof: Let

�′ = {x ∈ Z
d \ {0} : −1 ≤ xi ≤ 1 for all i = 1, . . . , d}.

We consider the following cylinders on �′

A = {ω ∈ � : ω(e) = 1 for e ∈ E�′ , ω(e) = 0 for e = 〈0, y〉, y ∈ �′},
B = {ω ∈ � : ω(e) = 1 for e ∈ E�′ , ω(e) = 1 for e = 〈0, y〉, y ∈ �′}.
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Note that the event A (resp. B) forces all edges in E�′ to be open, and all edges
incidents at the origin to be closed (resp. open).

Let x0 be a vertex adjacent to the origin then, noting that the events {σ0 =
+1} × ({x0 ↔ ∞} ∩ A) and � × {0 ↔ ∞} are disjoint, we obtain

ν+(C+
∞ × �) ≥ ν+(� × {0 ↔ ∞}) + ν+({σ0 = +1} × {{x0 ↔ ∞} ∩ A}),

thus

ν+(C+
∞ × �) ≥ ν+(� × {0 ↔ ∞}) + 1

2
ν+(� × ({x0 ↔ ∞} ∩ A)).

Hence,

R(+; µ+) = µ+(C+
∞) ≥ φ1

p(0 ↔ ∞) + 1

2
φ1

p({x0 ↔ ∞} ∩ A)

= M(µ+) + 1

2
φ1

p({x0 ↔ ∞} ∩ A). (4)

For the structure of the random cluster measure we obtain

φ1
p(x0 ↔ ∞| A) = φ1

p(x0 ↔ ∞| B). (5)

Events {x0 ↔ ∞} and B are increasing, thus by FKG inequality [9] we obtain

φ1
p(x0 ↔ ∞| B) ≥ φ1

p(x0 ↔ ∞). (6)

By (5) and (6) follows

φ1
p({x0 ↔ ∞} ∩ A) ≥ φ1

p(x0 ↔ ∞) φ1
p(A) = M(µ+)φ1

p(A), (7)

where the last equality follows by the translation invariance of φ1
p.

We give now a lower bound for φ1
p(A). Let k(d,�′) be the number of edges of

the graph (�′, E�′). For ω\e ∈ �\e = {0, 1}E
d\{e}, we have [10] (see also [15, 23])

φ1
p(ω(e) = 1 | ω\e) ∈

{
p,

p

2 − p

}
. (8)

Moreover

φ1
p(A) = φ1

p({ω(e) = 1, e ∈ E�′ } ∩ {ω(e) = 0, e = 〈0, y〉, y ∈ �′}), (9)

thus, by (8) and (9) follows

φ1
p(A) ≥

(
p

2 − p

)k(d,�′)

(1 − p)2d . (10)

By (7) and (10), we obtain

φ1
p({x0 ↔ ∞} ∩ A) ≥ M(µ+)

(
p

2 − p

)k(d,�′)

(1 − p)2d . (11)
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We also give an upper bound for k(d,�′). The number of vertices in �′ is
3d − 1 and there are at most 2d edges incident to each vertex in �′, so k(d,�′) ≤
2d(3d − 1). Thus, by (4) and (11), Theorem 3.1 is proved. �

We notice that the bound of Theorem 3.1 deteriorates in high dimensions.
It is actually known that the percolation is enhanced for large dimensions; for
example in [2] is proved that for large d the probability of percolation remains
positive for all values of β > βd . Using [2] one could improve the inequality (3)
showing that for dimension d large enough there is percolation for each value of
the temperature parameter. We end the section with this remark.

Remark 31. The Onsager solution for the two dimensional ferromagnetic Ising
model shows the exact value of magnetization as a function of β ∈ [βc,∞) [24].
It is

M(µ+) = {1 − [sinh(2β)]−4} 1
8 . (12)

We can re-write (12) as a function of the parameter x = 1 − p = exp{−2β} ob-
taining

M(µ+) =
{

1 −
[

2x

1 − x2

]4
} 1

8

. (13)

Then, using Taylor expansion we obtain m = 1 − 2x4 + o(x4), giving the magne-
tization for small values of the temperature (corresponding to small x). We do not
have an explicit formula for the percolation probability but for small x it is easy
to calculate the first terms in Taylor expansion. We find

R(+; µ+) = 1 − x4 + o(x4). (14)

This general relation also holds for regular graphs

(1 − R(+; µ+)) ∼ 1/2(1 − M(µ+)) ∼ xn

where n is the degree of the origin.

4. N SLABS PERCOLATION AND MAGNETIZATION

In this section we propose a conjecture for the characterization of phase
transition through percolation in the case of N slabs and we prove some general
results.

We introduce some basic definitions for slabs. Let Z
2 be the two-dimensional

lattice, and consider the set Z
2 × {0, 1, . . . , N − 1}, where N is an arbitrary posi-

tive integer. We put an edge between each pair of vertices having unitary distance.
Its edge set is denoted by E

2,N .
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Definition 42. An N-vertex ci, j is a vector

ci, j = ((i, j, 0), (i, j, 1), . . . , (i, j, N − 1))

where i, j ∈ Z. An N-edge e is formed by a couple of N-vertices < ci, j , cl,m >

where the vertices (i, j), (l, m) ∈ Z
2 are adjacent.

We give analogous definitions to section 2 just substituting vertices by N -
vertices so we write N-set, Npath, etc. We denote with � the family of all finite
N -connected N -set containing the N -vertex at the origin c0,0.

We define �(N ) = {−1,+1}Z
2×{0,1,...,N−1}, and for σ ∈ �(N ) we indicate with

σi, j,k ∈ {−1,+1} the spin on the vertex (i, j, k).

Definition 43. For σ ∈ �(N ), a (c+)-cluster ((c−)-cluster) of σ is a maximal N -
connected component of N -vertices ci,j such as

∑N−1
k=0 σi, j,k > 0(

∑N−1
k=0 σi, j,k <

0). We write (∞, c±)-cluster for an infinite (c±)-cluster.

We set the event

N -C±
∞ = {σ ∈ �(N ) : c0,0 ∈ (∞, c±)- cluster of σ },

Notice that N -C+
∞ is the event that the N -origin belongs to an infinite (c+)-cluster.

Let E+ (E−) be the event that the N -origin has a majority of spins +1 (−1) on its
vertices; obviously the events E+ and E− are disjoint and, for odd values of N ,
E+ ∪ E− = �(N ).

Let µ± be the Ising measure on �(N ) with (±)-boundary conditions. We set
up the interactions equal to one between all spins on two adjacent vertices. The
N-percolation probability is R(c±; µ±) = µ±(N -C±

∞).
In the next proposition we show that if the N -percolation probability is

positive then magnetization is positive.

Proposition 4.3. For the Ising model on �(N ), the following relation holds:

R(c±; µ±) > 0 ⇒ |M(µ±)| > 0.

Proof: We project the N slabs on a single lattice Z
2 by assigning spins +1

(−1) on the vertices corresponding to N -vertices with a majority of spins +1
(−1) and choosing spins +1 or −1 with probability 1

2 on the remaining vertices.

This construction induces a new measure π± on � = {−1,+1}Z
2
. We note that if

there exists an infinite (c+)-cluster in Z
2 × {0, 1, . . . , N − 1}, then there exists an

infinite (+)-cluster in the new lattice. If M(µ±) = 0 then M(π±) = 0. By using
the result of non coexistence in two dimensions of an (∞,+)-cluster with an
(∞,−)-cluster given in [14] (see also [12]) follows R(±; π±) = 0. Thus also
R(c±; µ±) = 0 by the observation above. �
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The opposite implication of Proposition 4.3 will be partially proved.

Lemma 4.4. Let (H,A, P) be an arbitrary probability space. If X and Y are
random variables with X symmetric and Y not negative, then

P(X + Y > 0) ≥ P(X + Y < 0).

Proof: Since Y ≥ 0, {X > 0} ⊆ {X + Y > 0} and {X + Y < 0} ⊆ {X < 0}.
Thus, because of X is symmetric

P(X + Y > 0) ≥ P(X > 0) = P(X < 0) ≥ P(X + Y < 0).

�

The following proposition says that if there is phase transition then, with (+)-
boundary conditions, the probability of a majority of +1 spins on the N -origin is
larger than the probability of a majority of −1 spins.

Proposition 4.5. For the Ising model on �(N ) we have: |µ±(E+) − µ±(E−)| > 0
if and only if β > βc.

Proof: Suppose β ≤ βc, then µ+ = µ− = µ, so

µ±(E+) = µ(E+) = µ(E−) = µ±(E−).

Conversely, let us consider ω ∈ �(N ) = {0, 1}E
2,N

. Given ω ∈ �(N ), the sum
of spins on the vertices in c0,0 can be expressed as the sum of a symmetric random
variable (vertices belonging to a finite cluster of open edges) and a positive random
variable (vertices belonging to an infinite cluster of open edges), thus by Lemma
4.4

ν+(E+ × �(N ) | ω) ≥ ν+(E− × �(N ) | ω). (15)

We have

µ+(E+) =
∫

�(N )

ν+(E+ × �(N ) | ω) φ1
p(dω). (16)

Analogously for µ+(E−). Let A be the event that all vertices in c0,0 belong to an
infinite open cluster. More precisely

A = {ω ∈ �(N ) : (0, 0, k) ↔ ∞ for all k = 0, . . . , N − 1}.
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Given ω ∈ A, the conditional measure is obtained by setting σ0,0,k = +1 for every
k = 0, . . . , N − 1, thus ν+(E+ × �(N ) | ω) = 1. Hence, by (15) and (16), follows

µ+(E+) =
∫

A
ν+

(
E+ × �(N )

∣∣ ω)
φ1

p(dω) +
∫

�(N )\A
ν+

(
E+ × �(N ) | ω)

φ1
p(dω)

=
∫

A
φ1

p(dω) +
∫

�(N )\A
ν+

(
E+ × �(N )

∣∣ ω)
φ1

p(dω)

≥ φ1
p(A) +

∫
�(N )\A

ν+
(
E− × �(N )

∣∣ ω)
φ1

p(dω). (17)

Moreover if ω ∈ A then ν+(E− × �(N ) | ω) = 0. Thus

µ+(E−) =
∫

�(N )\A
ν+(E− × �(N ) | ω) φ1

p(dω). (18)

By using (15), (17) and (18), we obtain

µ+(E+) − µ+(E−) ≥ φ1
p(A). (19)

Consider now the events

F = {ω ∈ �(N ) : (0, 0, 0) ↔ ∞},

G = {ω ∈ �(N ) : ω(e) = 1 for e = 〈(0, 0, k − 1), (0, 0, k)〉, k = 1, .., N − 1}.
We note that A ⊇ F ∩ G. Since F and G are increasing events, by FKG inequality
we obtain

φ1
p(A) ≥ φ1

p(F ∩ G) ≥ φ1
p(F) φ1

p(G). (20)

But, by hypothesis, φ1
p(F) = φ1

p((0, 0, 0) ↔ ∞) = M(µ+) > 0 and
φ1

p(G) > 0 depending on a finite number of edges. By inequality (20) we get
φ1

p(A) > 0, hence

µ+(E+) − µ+(E−) ≥ φ1
p(A) > 0.

The same argument holds for (−)-boundary conditions, therefore

Phase transition ⇔ |M(µ±)| > 0 ⇒ |µ±(E+) − µ±(E−)| > 0.

�

We are now in the position to present our conjecture for the characterization
of phase transition for the Ising model on the lattices Z

2 × {0, 1, . . . , N − 1}. We
believe that, for these models, N -percolation probability is positive if and only
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if there is phase transition. Proposition 4.3 shows that an implication is true. To
prove the other one we should use Proposition 4.5 and the next argument.

Let Y ∈ � and set

C±
Y = {σ ∈ �(N ) : Y ∈ � is a (c±)-cluster of σ }. (21)

We have, as in [5]

µ+(E+) − µ+(E−) = µ+(E+) − µ−(E+) = (22)

=
∑
Y∈�

(µ+(C+
Y ) − µ−(C+

Y )) + µ+(N -C+
∞) − µ−(N -C+

∞).

Thus, a sufficient condition for the claim is

µ+(C+
Y ) ≤ µ−(C+

Y ), for all Y ∈ �. (23)

Indeed, by assumption (23) and Proposition 4.5 for β > βc one obtains

R(c+; µ+) = µ+(N -C+
∞) ≥ µ+(E+) − µ+(E−) > 0. (24)

Therefore Proposition 4.3 and inequality (24) give a characterization of phase
transition through percolation in the case of N slabs. In the next section, we
present the cases of two (N = 2) and three slabs (N = 3) with periodic boundary
conditions, showing that (23) holds.

5. THE CASES OF TWO AND THREE SLABS

In this section, we give a characterization of phase transition through perco-
lation in the cases of two and three slabs. We manage to the case of two slabs the
result of [5]. The extension to the case of three slabs is done in a different flavor.
We start with some new definitions.

Let B+ be the event that each vertex in ∂�, where � is an N -box, has +1
spin, and similarly for B−. If C+

Y is given by (21), let ∂C+
Y be the event such

that each N -vertex in ∂Y does not have a majority of +1 spins on its vertices. In
general we denote by

σV = {σ̃ ∈ �
(N )
� : σ̃i, j,k = σi, j,k for all ci, j ∈ V, k = 0, . . . , N − 1}

a cylinder where the values of σi, j,k ∈ {−1,+1} are assigned on V ⊂ �. If V1 and
V2 are two disjoint sets of vertices, we denote by (σV1 , σV2 ) the cylinder σV1∪V2 .

We remark that

µ�(B+ | σX ) ≤ µ�(B+ | σ̄X ), µ�(B− | σX ) ≥ µ�(B− | σ̄X ), (25)

where (σ̄X )u ≥ (σX )u for every u ∈ X (see [22]).
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Theorem 5.1. For the Ising model on �(2) the inequality |M(µ±)| ≤ R(c±; µ±)
holds. Moreover R(c±; µ±) > 0 if and only if |M(µ±)| > 0.

Proof: For a given Y ∈ �, consider an N -box �o such that �o ⊃ Y ∪ ∂Y . Let
� = �o ∪ ∂�o and let µ� be the Ising measure on �

(N )
� = {−1, +1}� with free

boundary conditions.
Let us consider the cylinder 1Y ⊃ C+

Y that assigns +1 spins to all the vertices
in Y . For each σ∂Y ⊂ ∂C+

Y , the cylinders {(1Y , σ∂Y )}σ∂Y ⊂∂C+
Y

are all disjoint and⋃
σ∂Y ⊂∂C+

Y
(1Y , σ∂Y ) = C+

Y . We notice that C+
Y is not an increasing event because it

gives information on each column belonging to ∂Y and preciselly the sum of the
spins in each column is less or equal to zero. Using also the Markov property for
the Ising field we will obtain, in the end of the proof, that µ+

�0
(C+

Y ) ≤ µ−
�0

(C+
Y )

for any finite set Y such that Y ∪ ∂Y ⊂ �0.
Consider the events B+ and B− referred to ∂�0, then we can write

µ+
�o

(C+
Y ) = µ�(C+

Y ∩ B+)

µ�(B+)
= 1

µ�(B+)

∑
σ∂Y ⊂∂C+

Y

µ�((1Y , σ∂Y ) ∩ B+)

= 1

µ�(B+)

∑
σ∂Y ⊂∂C+

Y

µ�(B+ | (1Y , σ∂Y ))µ�((1Y , σ∂Y ))

= 1

µ�(B+)

∑
σ∂Y ⊂∂C+

Y

µ�(B+ | σ∂Y ) µ�(1Y | σ∂Y ) µ�(σ∂Y )

where we are using Markov property in the last equality.
Similarly for µ−

�o
(C+

Y ). Since µ�(B+) = µ�(B−), we have

µ+
�o

(C+
Y )

µ−
�o

(C+
Y )

=
∑

σ∂Y ⊂∂C+
Y

µ�(B+ | σ∂Y ) µ�(1Y | σ∂Y ) µ�(σ∂Y )∑
σ∂Y ⊂∂C+

Y
µ�(B− | σ∂Y ) µ�(1Y | σ∂Y ) µ�(σ∂Y )

≤ sup
σ∂Y ⊂∂C+

Y

µ�(B+ | σ∂Y )

µ�(B− | σ∂Y )
. (26)

Let us define the event

F∂Y := {σ̃ ∈ �(2) : (σ̃i, j,0, σ̃i, j,1) ∈ L} ⊂ ∂C+
Y , (27)

where L = {(−1, 1), (1,−1)}. By using (25) it is clear that the supremum in (26)
is achieved for σ∂Y ⊂ F∂Y . Let us define the rotation operator R : � → � as:

(Rσ )i, j,1 = σi, j,0 and (Rσ )i, j,0 = σi, j,1.

The following equality is clear

µ�(B+|σ∂Y ) = µ�(B+|(Rσ )∂Y ) (28)
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because the first and second slab play the same role in the Ising model. Moreover
if σ∂Y ⊂ F∂Y then (Rσ )∂Y = −σ∂Y , and in general is µ�(B+|σ∂Y ) = µ�(B−| −
σ∂Y ).

Thus for each σ∂Y ⊂ F∂Y

µ�(B+|σ∂Y ) = µ�(B+|(Rσ )∂Y ) = µ�(B+| − σ∂Y ) = µ�(B−|σ∂Y ). (29)

Hence, by (29) and previous argument

sup
σ∂Y ⊂∂C+

Y

µ�(B+ | σ∂Y )

µ�(B− | σ∂Y )
= sup

σ∂Y ⊂F∂Y

µ�(B+ | σ∂Y )

µ�(B− | σ∂Y )
= 1. (30)

Since this relation holds for all �o ⊃ Y ∪ ∂Y then also in the limit �o →
Z

2 × {0, 1}, by (26) and (30) we obtain (23).
To prove the inequality between 2-percolation probability and magnetization

it is enough to observe that, by symmetry, we have Eµ±(σ0,0,0) = Eµ±(σ0,0,1),
hence

M(µ±) = 1

2
Eµ±(σ0,0,0 + σ0,0,1) = µ±(E+) − µ±(E−).

Now, the first claim of the theorem immediately follows by (22) and (23). The
second claim follows by the first inequality and Proposition 4.1. �

We present another case, in which we are able to prove (23), and thus
to obtain characterization of phase transition via percolation. We consider
the graph G̃3 having vertex set Z

2 × {0, 1, 2} and edge set E
2,3 ∪ E

p, where
E

p = {〈(i, j, 0), (i, j, 2)〉 : i, j ∈ Z}.
Consider the ferromagnetic Ising measures µ± on G̃3, that we say to have

periodic boundary conditions, and define

D+
Y = {σ ∈ �(N ) : Y ∈ � belongs to a (c+) − cluster of σ }, (31)

so that C+
Y = D+

Y ∩ ∂C+
Y . The event D+

Y depends only on the values of {σi, j,k :
ci, j ∈ Y, k = 0, . . . , N − 1}.

Theorem 5.2. For the Ising model on �(3), with periodic boundary conditions,
we have: R(c±; µ±) > 0 if and only if |M(µ±)| > 0.

Proof: If R(c±; µ±) > 0, then |M(µ±)| > 0 by Proposition 4.3 with N = 3.
Conversely, if |M(µ±)| > 0, we can use Proposition 4.5 and prove that (23) holds.
Indeed, for a given Y ∈ �, consider the set of all cylinders σY ⊂ D+

Y and σ∂Y ⊂
∂C+

Y . Then, using Markov property, we have as in Theorem 5.1

µ+
�o

(C+
Y ) = 1

µ�(B+)

∑
σ∂Y ⊂∂C+

Y

µ�(B+ | σ∂Y )µ�(σ∂Y )
∑

σY ⊂D+
Y

µ�(σY | σ∂Y ),
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and similarly for µ−
�o

(C+
Y ), hence

µ+
�o

(C+
Y )

µ−
�o

(C+
Y )

≤ sup
σ∂Y ⊂∂C+

Y

µ�(B+ | σ∂Y )

µ�(B− | σ∂Y )
. (32)

Let us define

G∂Y := {σ̃ ∈ � : (σ̃i, j,0, σ̃i, j,1, σ̃i, j,2) ∈ L} ⊂ ∂C+
Y , (33)

where L = {(−1,−1, 1), (−1, 1,−1), (1,−1,−1)}. Relations (25) shows that the
supremum in (32) is achieved on cylinders that are subset of G∂Y .

If R is the rotation operator defined as

(Rσ )i, j,k = σi, j,k+1 ∀(i, j, k) ∈ Z
2 × {0, 1, 2}, k = 0, 1, 2 (34)

where σi, j,0 = σi, j,3, then in a similar way used in Theorem 5.1, for σ∂Y ⊂ G∂Y

we obtain

µ�(B+ | σ∂Y ) = µ�(B− | (−Rσ )∂Y ) ≤ µ�(B− | σ∂Y ). (35)

The last inequality follows by the observation that if ci, j ∈ ∂Y , then σi, j,k ≤
(−Rσ )i, j,k holds for all σ ∈ G∂Y .

Thus

lim sup
�↑Z2×{0,1,2}

sup
σ∂Y ⊂∂C+

Y

µ�(B+ | σ∂Y )

µ�(B− | σ∂Y )
≤ 1, (36)

implying (23). This concludes the proof. �

Theorem 5.2 says that there exists a phase transition in the Ising model on
�(3) with periodic boundary conditions if and only if there is a positive probability
that the 3-vertex at the origin belongs to an infinite (c+)-cluster. Differently to
the case of two slabs, we do not obtain an inequality between the 3-percolation
probability and magnetization.
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